R., Hodgman, T. C., Yang, Z. R. and Doyle, A. K. (2003). Characterizing

teolytic cleavage site activity using bio-basis function neural networks,

informatics, 19, pp. 1741–1747.

Hoffmann, F. and Perkins, A. (2020). Toward a more holistic method of

ome assembly assessment, BMC Bioinformatics, 21, pp. 249.

hou, P. and Li, Z. (2007). T-scale as a novel vector of topological descriptors for

no acids and its application in QSARs of peptides, Journal of Molecular

ucture, 830, pp. 106–115.

R. (1996). Regression shrinkage and selection via the lasso, Journal of the

yal Statistical Society, 58, pp. 267–288.

R., Hastie, T. (2007). Outlier sums for differential gene expression analysis,

statistics, 8, pp. 2–8.

. E. (2001). Sparse Bayesian learning and the relevance vector machine, Journal

Machine Learning Research, 1, pp. 211–244.

A. N. (1963). Solution of incorrectly formulated problems and the regularization

hod, Soviet Mathematics, 4, pp. 1035–1038.

, Rhodes, D., Perner, S., Dhanasekaran, S., Mehra, R., Sun, X., Varambally, S.,

o, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J.

bin M. A. and Chinnaiyan A. M. (2005). Recurrent fusion of TMPRSS2 and

S transcription factor genes in prostate cancer, Science, 310, pp. 644–648.

A., King, C., de la Morenas, A. and Perry, V. K. (2008). Gene expression

ormalities in histologically normal breast epithelium of breast cancer patients,

ernational Journal of Cancer, 122, pp. 1557–1566.

Baldrich, P., Criqui, M. C., Dubois, M., Clavel, M., Meyers, B. C. and Genschik,

(2019). Cell cycle-dependent regulation and function of ARGONAUTE1 in

nts, Plant Cell, 31, pp. 1734–1750.

Maleki, F., Kusalik, A. and Napper, S. (2016). DAPPLE2: a tool for the

mology-based prediction of post-translational modification sites, Journal of

teome Research, 15, pp. 2760–2767.

A., Hines, W. C., Vargas, K. M., Jones, A. C., Joste, N. E., Bisoffi, M. and

ffith, J. K. (2011). breast field cancerization: isolation and comparison of

merase expressing cells in tumor and tumor adjacent, histologically normal

ast tissue, Molecular Cancer Research, 9, pp. 1209–1221.

Ghosh, D. and Feingold, E. (2012). Comprehensive literature review and

istical considerations for microarray meta-analysis. Nucleic Acids Research, 40,

3785–3799.

S. (2021). Modified significance analysis of microarrays in heterogeneous

eases, Journal of Personalised Medicine, 11, pp. 62.

Y. and Liang, J. (2006). Estimation of amino acid residue substitution rates at

al spatial regions and application in protein function inference: a Bayesian

nte Carlo approach, Molecular Biology, 23, pp. 421–436.

Hayashi, T. and Egawa, T. (2019). The effects of caffeine on metabolomic

ponses to muscle contraction in rat skeletal muscle, Nutrients, 11, e1819.